Search results for " simulation."
showing 10 items of 3931 documents
The transition state and cognate concepts
2019
Abstract This review aims firstly to clarify the meanings of key terms and concepts associated with the idea of the transition state, as developed by theoreticians and applied by experimentalist, and secondly to provide an update to the meaning and significance of the transition state in an era when computational simulation, in which complexity is being increasingly incorporated, is commonly employed as a means by which to bridge the realms of theory and experiment. The relationship between the transition state and the potential-energy surface for an elementary reaction is explored, with discussion of the following terms: saddle point, minimum-energy reaction path, reaction coordinate, acti…
Derivation of a Homogenized Two-Temperature Model from the Heat Equation
2014
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]
Voronovskaya type results and operators fixing two functions
2021
The present paper deals with positive linear operators which fix two functions. The transfer of a given sequence (Ln) of positive linear operators to a new sequence (Kn) is investigated. A general procedure to construct sequences of positive linear operators fixing two functions which form an Extended Complete Chebyshev system is described. The Voronovskaya type formula corresponding to the new sequence which is strongly influenced by the nature of the fixed functions is obtained. In the last section our results are compared with other results existing in literature.
Constant sign and nodal solutions for nonlinear robin equations with locally defined source term
2020
We consider a parametric Robin problem driven by a nonlinear, nonhomogeneous differential operator which includes as special cases the p-Laplacian and the (p,q)-Laplacian. The source term is parametric and only locally defined (that is, in a neighborhood of zero). Using suitable cut-off techniques together with variational tools and comparison principles, we show that for all big values of the parameter, the problem has at least three nontrivial smooth solutions, all with sign information (positive, negative and nodal).
Optical properties of GaSe, characterization and simulation
2021
Abstract The study focuses on structural and optical characterizations and properties of the GaSe lamellar material in one hand and on a numerical simulation of the photovoltaic properties of the ITO/GaSe heterojunction in a second hand. A few layers of GaSe were exfoliated from bulk GaSe on PET substrate. The optical transmission was recorded at room temperature. It shows that GaSe exhibits both indirect and direct band gaps of about 1.92 and 2.2 eV respectively. A value, as high as 104 cm−1, of the absorption coefficient was obtained. The corresponding refractive index has been determined numerically according to the Sellmeier and Cauchy models. The interesting value of absorption shows o…
Novel multipactor studies in RF satellite payloads: Single-carrier digital modulated signals and ferrite materials
2017
In this work it is reviewed the most novel advances in the multipactor RF breakdown risk assessment devoted to RF satellite microwave passive devices employed in space telecommunication systems. On one side, it is studied the effect of transmitting a single-carrier digital modulated signal in the multipactor RF voltage threshold in a coaxial line. On the other hand, an analysis of the multipactor phenomenon in a parallel-plate waveguide containing a magnetized ferrite slab it is presented.
Strategies for numerical simulation of linear friction welding of metals: a review
2017
Linear friction welding (LFW) is a solid-state joining process used to weld non-axisymmetric components. Material joining is obtained through the reciprocating motion of two specimens undergoing an axial force. During this process, the heat source is determined by the frictional work transformed into heat. This results in a local softening of the material and plays a key role in the onset of the bonding conditions. In this paper, a critical analysis of the different approaches used to simulate the LFW processes is provided. The focus of the paper is the comparison of different modeling strategies and the most relevant outputs available, i.e. temperature, strain and stress distribution, mate…
Stability of melt flow during magnetic sonication in a floating zone configuration
2018
Combined static and alternating magnetic fields are shown to create an oscillating pressure that can cause cavitation in molten metals. A time-averaged flow is also excited, consisting of two tori squeezed to thin boundary layers. Flow instability develops as a standing wave between these tori.
Preface for MMM 2016 focus issue
2017
International audience
State-space formulation of scalar Preisach hysteresis model for rapid computation in time domain
2015
A state-space formulation of classical scalar Preisach model (CSPM) of hysteresis is proposed. The introduced state dynamics and memory interface allow to use the state equation, which is rapid in calculation, instead of the original Preisach equation. The main benefit of the proposed modeling approach is the reduced computational effort which requires only a single integration over the instantaneous line segment in the Preisach plane. Numerical evaluations of the computation time and model accuracy are provided in comparison to the CSPM which is taken as a reference model.